extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D7).1C23 = C2×C28⋊4D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).1C2^3 | 448,928 |
(C22×D7).2C23 = C2×C4.D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).2C2^3 | 448,929 |
(C22×D7).3C23 = C42.276D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).3C2^3 | 448,930 |
(C22×D7).4C23 = C2×C42⋊2D7 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).4C2^3 | 448,931 |
(C22×D7).5C23 = C42.277D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).5C2^3 | 448,932 |
(C22×D7).6C23 = C2×D14⋊D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).6C2^3 | 448,942 |
(C22×D7).7C23 = C2×Dic7.D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).7C2^3 | 448,944 |
(C22×D7).8C23 = C2×C22.D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).8C2^3 | 448,945 |
(C22×D7).9C23 = C23⋊3D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).9C2^3 | 448,946 |
(C22×D7).10C23 = C24.30D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).10C2^3 | 448,947 |
(C22×D7).11C23 = C24.31D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).11C2^3 | 448,948 |
(C22×D7).12C23 = C2×D14.5D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).12C2^3 | 448,958 |
(C22×D7).13C23 = C14.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).13C2^3 | 448,963 |
(C22×D7).14C23 = C2×C4⋊C4⋊D7 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).14C2^3 | 448,965 |
(C22×D7).15C23 = C14.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).15C2^3 | 448,966 |
(C22×D7).16C23 = C14.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).16C2^3 | 448,967 |
(C22×D7).17C23 = C14.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).17C2^3 | 448,968 |
(C22×D7).18C23 = C42⋊8D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).18C2^3 | 448,977 |
(C22×D7).19C23 = C42⋊9D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).19C2^3 | 448,978 |
(C22×D7).20C23 = C42.92D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).20C2^3 | 448,979 |
(C22×D7).21C23 = C42⋊10D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).21C2^3 | 448,980 |
(C22×D7).22C23 = C42.95D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).22C2^3 | 448,983 |
(C22×D7).23C23 = C42.96D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).23C2^3 | 448,984 |
(C22×D7).24C23 = C42.97D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).24C2^3 | 448,985 |
(C22×D7).25C23 = C42.98D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).25C2^3 | 448,986 |
(C22×D7).26C23 = C42.99D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).26C2^3 | 448,987 |
(C22×D7).27C23 = C42.100D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).27C2^3 | 448,988 |
(C22×D7).28C23 = C42.102D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).28C2^3 | 448,991 |
(C22×D7).29C23 = C42.104D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).29C2^3 | 448,993 |
(C22×D7).30C23 = C42.228D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).30C2^3 | 448,1001 |
(C22×D7).31C23 = Dic14⋊23D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).31C2^3 | 448,1005 |
(C22×D7).32C23 = Dic14⋊24D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).32C2^3 | 448,1006 |
(C22×D7).33C23 = D4⋊5D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).33C2^3 | 448,1007 |
(C22×D7).34C23 = D4⋊6D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).34C2^3 | 448,1008 |
(C22×D7).35C23 = C42⋊16D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).35C2^3 | 448,1009 |
(C22×D7).36C23 = C42.113D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).36C2^3 | 448,1011 |
(C22×D7).37C23 = C42.114D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).37C2^3 | 448,1012 |
(C22×D7).38C23 = C42⋊17D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).38C2^3 | 448,1013 |
(C22×D7).39C23 = C42.115D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).39C2^3 | 448,1014 |
(C22×D7).40C23 = C42.116D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).40C2^3 | 448,1015 |
(C22×D7).41C23 = C42.117D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).41C2^3 | 448,1016 |
(C22×D7).42C23 = C42.118D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).42C2^3 | 448,1017 |
(C22×D7).43C23 = C42.119D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).43C2^3 | 448,1018 |
(C22×D7).44C23 = C42.122D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).44C2^3 | 448,1021 |
(C22×D7).45C23 = Q8⋊5D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).45C2^3 | 448,1029 |
(C22×D7).46C23 = Q8⋊6D28 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).46C2^3 | 448,1030 |
(C22×D7).47C23 = C42.132D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).47C2^3 | 448,1034 |
(C22×D7).48C23 = C42.133D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).48C2^3 | 448,1035 |
(C22×D7).49C23 = C42.134D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).49C2^3 | 448,1036 |
(C22×D7).50C23 = C42.135D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).50C2^3 | 448,1037 |
(C22×D7).51C23 = C42.136D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).51C2^3 | 448,1038 |
(C22×D7).52C23 = C24.56D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).52C2^3 | 448,1039 |
(C22×D7).53C23 = C24⋊3D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).53C2^3 | 448,1043 |
(C22×D7).54C23 = C24.33D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).54C2^3 | 448,1044 |
(C22×D7).55C23 = C24.34D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).55C2^3 | 448,1045 |
(C22×D7).56C23 = C24.35D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).56C2^3 | 448,1046 |
(C22×D7).57C23 = C24⋊4D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).57C2^3 | 448,1047 |
(C22×D7).58C23 = C24.36D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).58C2^3 | 448,1048 |
(C22×D7).59C23 = C28⋊(C4○D4) | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).59C2^3 | 448,1049 |
(C22×D7).60C23 = C14.682- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).60C2^3 | 448,1050 |
(C22×D7).61C23 = Dic14⋊19D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).61C2^3 | 448,1051 |
(C22×D7).62C23 = Dic14⋊20D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).62C2^3 | 448,1052 |
(C22×D7).63C23 = C14.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).63C2^3 | 448,1054 |
(C22×D7).64C23 = D28⋊19D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).64C2^3 | 448,1062 |
(C22×D7).65C23 = C14.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).65C2^3 | 448,1066 |
(C22×D7).66C23 = C14.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).66C2^3 | 448,1068 |
(C22×D7).67C23 = C14.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).67C2^3 | 448,1069 |
(C22×D7).68C23 = C14.462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).68C2^3 | 448,1070 |
(C22×D7).69C23 = C14.1152+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).69C2^3 | 448,1071 |
(C22×D7).70C23 = C14.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).70C2^3 | 448,1072 |
(C22×D7).71C23 = C14.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).71C2^3 | 448,1073 |
(C22×D7).72C23 = C14.492+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).72C2^3 | 448,1074 |
(C22×D7).73C23 = C22⋊Q8⋊25D7 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).73C2^3 | 448,1077 |
(C22×D7).74C23 = C14.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).74C2^3 | 448,1090 |
(C22×D7).75C23 = C14.222- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).75C2^3 | 448,1093 |
(C22×D7).76C23 = C14.232- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).76C2^3 | 448,1094 |
(C22×D7).77C23 = C14.772- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).77C2^3 | 448,1095 |
(C22×D7).78C23 = C14.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).78C2^3 | 448,1096 |
(C22×D7).79C23 = C14.562+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).79C2^3 | 448,1097 |
(C22×D7).80C23 = C14.572+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).80C2^3 | 448,1098 |
(C22×D7).81C23 = C14.582+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).81C2^3 | 448,1099 |
(C22×D7).82C23 = C14.262- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).82C2^3 | 448,1100 |
(C22×D7).83C23 = C14.792- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).83C2^3 | 448,1101 |
(C22×D7).84C23 = C4⋊C4.197D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).84C2^3 | 448,1102 |
(C22×D7).85C23 = C14.612+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).85C2^3 | 448,1110 |
(C22×D7).86C23 = C14.1222+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).86C2^3 | 448,1111 |
(C22×D7).87C23 = C14.842- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).87C2^3 | 448,1115 |
(C22×D7).88C23 = C14.662+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).88C2^3 | 448,1116 |
(C22×D7).89C23 = C14.672+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).89C2^3 | 448,1117 |
(C22×D7).90C23 = C14.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).90C2^3 | 448,1118 |
(C22×D7).91C23 = C14.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).91C2^3 | 448,1119 |
(C22×D7).92C23 = C14.862- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).92C2^3 | 448,1120 |
(C22×D7).93C23 = C42.137D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).93C2^3 | 448,1122 |
(C22×D7).94C23 = C42.138D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).94C2^3 | 448,1123 |
(C22×D7).95C23 = D7×C4.4D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).95C2^3 | 448,1126 |
(C22×D7).96C23 = C42⋊20D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).96C2^3 | 448,1131 |
(C22×D7).97C23 = C42.143D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).97C2^3 | 448,1134 |
(C22×D7).98C23 = C42.144D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).98C2^3 | 448,1135 |
(C22×D7).99C23 = C42⋊22D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).99C2^3 | 448,1136 |
(C22×D7).100C23 = C42.145D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).100C2^3 | 448,1137 |
(C22×D7).101C23 = C42.237D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).101C2^3 | 448,1144 |
(C22×D7).102C23 = C42.150D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).102C2^3 | 448,1145 |
(C22×D7).103C23 = C42.152D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).103C2^3 | 448,1147 |
(C22×D7).104C23 = C42.153D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).104C2^3 | 448,1148 |
(C22×D7).105C23 = C42.154D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).105C2^3 | 448,1149 |
(C22×D7).106C23 = C42.155D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).106C2^3 | 448,1150 |
(C22×D7).107C23 = C42.156D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).107C2^3 | 448,1151 |
(C22×D7).108C23 = C42.157D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).108C2^3 | 448,1152 |
(C22×D7).109C23 = C42.158D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).109C2^3 | 448,1153 |
(C22×D7).110C23 = C42.160D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).110C2^3 | 448,1155 |
(C22×D7).111C23 = C42⋊23D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).111C2^3 | 448,1157 |
(C22×D7).112C23 = C42.163D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).112C2^3 | 448,1162 |
(C22×D7).113C23 = C42.164D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).113C2^3 | 448,1163 |
(C22×D7).114C23 = C42⋊25D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).114C2^3 | 448,1164 |
(C22×D7).115C23 = C42.165D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).115C2^3 | 448,1165 |
(C22×D7).116C23 = Dic14⋊11D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).116C2^3 | 448,1171 |
(C22×D7).117C23 = C42.168D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).117C2^3 | 448,1172 |
(C22×D7).118C23 = C42⋊28D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).118C2^3 | 448,1173 |
(C22×D7).119C23 = C42.240D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).119C2^3 | 448,1178 |
(C22×D7).120C23 = C42.176D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).120C2^3 | 448,1184 |
(C22×D7).121C23 = C42.177D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).121C2^3 | 448,1185 |
(C22×D7).122C23 = C42.178D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).122C2^3 | 448,1186 |
(C22×D7).123C23 = C42.179D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).123C2^3 | 448,1187 |
(C22×D7).124C23 = C42.180D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).124C2^3 | 448,1188 |
(C22×D7).125C23 = C2×C23.23D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).125C2^3 | 448,1242 |
(C22×D7).126C23 = C2×C28⋊7D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).126C2^3 | 448,1243 |
(C22×D7).127C23 = C24.72D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).127C2^3 | 448,1244 |
(C22×D7).128C23 = C2×Dic7⋊D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).128C2^3 | 448,1255 |
(C22×D7).129C23 = C2×C28⋊D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).129C2^3 | 448,1256 |
(C22×D7).130C23 = C24⋊7D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).130C2^3 | 448,1257 |
(C22×D7).131C23 = C24.41D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).131C2^3 | 448,1258 |
(C22×D7).132C23 = C24.42D14 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).132C2^3 | 448,1259 |
(C22×D7).133C23 = C2×C28.23D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).133C2^3 | 448,1267 |
(C22×D7).134C23 = C14.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).134C2^3 | 448,1269 |
(C22×D7).135C23 = C14.452- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).135C2^3 | 448,1270 |
(C22×D7).136C23 = C14.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).136C2^3 | 448,1277 |
(C22×D7).137C23 = C14.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).137C2^3 | 448,1282 |
(C22×D7).138C23 = C14.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | | (C2^2xD7).138C2^3 | 448,1283 |
(C22×D7).139C23 = (C2×C28)⋊17D4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).139C2^3 | 448,1285 |
(C22×D7).140C23 = C14.1082- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).140C2^3 | 448,1286 |
(C22×D7).141C23 = C14.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).141C2^3 | 448,1287 |
(C22×D7).142C23 = C14.C25 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).142C2^3 | 448,1378 |
(C22×D7).143C23 = D14.C24 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | 8- | (C2^2xD7).143C2^3 | 448,1380 |
(C22×D7).144C23 = D28.39C23 | φ: C23/C2 → C22 ⊆ Out C22×D7 | 112 | 8+ | (C2^2xD7).144C2^3 | 448,1382 |
(C22×D7).145C23 = C2×C42⋊D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).145C2^3 | 448,925 |
(C22×D7).146C23 = C2×C4×D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).146C2^3 | 448,926 |
(C22×D7).147C23 = C4×C4○D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).147C2^3 | 448,927 |
(C22×D7).148C23 = C2×D7×C22⋊C4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).148C2^3 | 448,937 |
(C22×D7).149C23 = C2×Dic7⋊4D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).149C2^3 | 448,938 |
(C22×D7).150C23 = C24.24D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).150C2^3 | 448,939 |
(C22×D7).151C23 = C2×D14.D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).151C2^3 | 448,941 |
(C22×D7).152C23 = C24.27D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).152C2^3 | 448,943 |
(C22×D7).153C23 = C2×C4⋊C4⋊7D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).153C2^3 | 448,955 |
(C22×D7).154C23 = C2×D28⋊C4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).154C2^3 | 448,956 |
(C22×D7).155C23 = C14.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).155C2^3 | 448,957 |
(C22×D7).156C23 = C2×C4⋊D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).156C2^3 | 448,959 |
(C22×D7).157C23 = C14.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).157C2^3 | 448,960 |
(C22×D7).158C23 = C2×D14⋊Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).158C2^3 | 448,961 |
(C22×D7).159C23 = C2×D14⋊2Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).159C2^3 | 448,962 |
(C22×D7).160C23 = C14.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).160C2^3 | 448,964 |
(C22×D7).161C23 = D7×C42⋊C2 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).161C2^3 | 448,973 |
(C22×D7).162C23 = C42⋊7D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).162C2^3 | 448,974 |
(C22×D7).163C23 = C42.188D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).163C2^3 | 448,975 |
(C22×D7).164C23 = C42.91D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).164C2^3 | 448,976 |
(C22×D7).165C23 = C42.93D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).165C2^3 | 448,981 |
(C22×D7).166C23 = C42.94D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).166C2^3 | 448,982 |
(C22×D7).167C23 = C4×D4⋊2D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).167C2^3 | 448,989 |
(C22×D7).168C23 = C42⋊11D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).168C2^3 | 448,998 |
(C22×D7).169C23 = C42.108D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).169C2^3 | 448,999 |
(C22×D7).170C23 = C42⋊12D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).170C2^3 | 448,1000 |
(C22×D7).171C23 = D4×D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).171C2^3 | 448,1002 |
(C22×D7).172C23 = D28⋊23D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).172C2^3 | 448,1003 |
(C22×D7).173C23 = D28⋊24D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).173C2^3 | 448,1004 |
(C22×D7).174C23 = C42.229D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).174C2^3 | 448,1010 |
(C22×D7).175C23 = C42.125D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).175C2^3 | 448,1025 |
(C22×D7).176C23 = C4×Q8⋊2D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).176C2^3 | 448,1026 |
(C22×D7).177C23 = C42.126D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).177C2^3 | 448,1027 |
(C22×D7).178C23 = Q8×D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).178C2^3 | 448,1028 |
(C22×D7).179C23 = C42.232D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).179C2^3 | 448,1031 |
(C22×D7).180C23 = D28⋊10Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).180C2^3 | 448,1032 |
(C22×D7).181C23 = C42.131D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).181C2^3 | 448,1033 |
(C22×D7).182C23 = C24⋊2D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).182C2^3 | 448,1042 |
(C22×D7).183C23 = D7×C4⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).183C2^3 | 448,1057 |
(C22×D7).184C23 = C14.372+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).184C2^3 | 448,1058 |
(C22×D7).185C23 = C4⋊C4⋊21D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).185C2^3 | 448,1059 |
(C22×D7).186C23 = C14.382+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).186C2^3 | 448,1060 |
(C22×D7).187C23 = C14.722- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).187C2^3 | 448,1061 |
(C22×D7).188C23 = C14.402+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).188C2^3 | 448,1063 |
(C22×D7).189C23 = C14.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).189C2^3 | 448,1064 |
(C22×D7).190C23 = D28⋊20D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).190C2^3 | 448,1065 |
(C22×D7).191C23 = C14.432+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).191C2^3 | 448,1067 |
(C22×D7).192C23 = D7×C22⋊Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).192C2^3 | 448,1079 |
(C22×D7).193C23 = C4⋊C4⋊26D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).193C2^3 | 448,1080 |
(C22×D7).194C23 = C14.162- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).194C2^3 | 448,1081 |
(C22×D7).195C23 = C14.172- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).195C2^3 | 448,1082 |
(C22×D7).196C23 = D28⋊21D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).196C2^3 | 448,1083 |
(C22×D7).197C23 = D28⋊22D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).197C2^3 | 448,1084 |
(C22×D7).198C23 = Dic14⋊21D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).198C2^3 | 448,1085 |
(C22×D7).199C23 = Dic14⋊22D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).199C2^3 | 448,1086 |
(C22×D7).200C23 = C14.512+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).200C2^3 | 448,1087 |
(C22×D7).201C23 = C14.1182+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).201C2^3 | 448,1088 |
(C22×D7).202C23 = C14.522+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).202C2^3 | 448,1089 |
(C22×D7).203C23 = C14.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).203C2^3 | 448,1091 |
(C22×D7).204C23 = C14.212- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).204C2^3 | 448,1092 |
(C22×D7).205C23 = C14.1202+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).205C2^3 | 448,1106 |
(C22×D7).206C23 = C14.1212+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).206C2^3 | 448,1107 |
(C22×D7).207C23 = C14.822- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).207C2^3 | 448,1108 |
(C22×D7).208C23 = C4⋊C4⋊28D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).208C2^3 | 448,1109 |
(C22×D7).209C23 = C14.622+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).209C2^3 | 448,1112 |
(C22×D7).210C23 = C14.832- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).210C2^3 | 448,1113 |
(C22×D7).211C23 = C14.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).211C2^3 | 448,1114 |
(C22×D7).212C23 = C42.233D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).212C2^3 | 448,1121 |
(C22×D7).213C23 = C42⋊18D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).213C2^3 | 448,1127 |
(C22×D7).214C23 = C42.141D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).214C2^3 | 448,1128 |
(C22×D7).215C23 = D28⋊10D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).215C2^3 | 448,1129 |
(C22×D7).216C23 = Dic14⋊10D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).216C2^3 | 448,1130 |
(C22×D7).217C23 = C42⋊21D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).217C2^3 | 448,1132 |
(C22×D7).218C23 = C42.234D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).218C2^3 | 448,1133 |
(C22×D7).219C23 = C42.236D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).219C2^3 | 448,1141 |
(C22×D7).220C23 = C42.148D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).220C2^3 | 448,1142 |
(C22×D7).221C23 = D28⋊7Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).221C2^3 | 448,1143 |
(C22×D7).222C23 = C42.151D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).222C2^3 | 448,1146 |
(C22×D7).223C23 = C42⋊24D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).223C2^3 | 448,1158 |
(C22×D7).224C23 = C42.189D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).224C2^3 | 448,1159 |
(C22×D7).225C23 = C42.161D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).225C2^3 | 448,1160 |
(C22×D7).226C23 = C42.162D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).226C2^3 | 448,1161 |
(C22×D7).227C23 = C42⋊26D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).227C2^3 | 448,1168 |
(C22×D7).228C23 = C42.238D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).228C2^3 | 448,1169 |
(C22×D7).229C23 = D28⋊11D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).229C2^3 | 448,1170 |
(C22×D7).230C23 = C42.171D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).230C2^3 | 448,1177 |
(C22×D7).231C23 = D28⋊12D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).231C2^3 | 448,1179 |
(C22×D7).232C23 = D28⋊8Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).232C2^3 | 448,1180 |
(C22×D7).233C23 = C42.241D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).233C2^3 | 448,1181 |
(C22×D7).234C23 = C42.174D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).234C2^3 | 448,1182 |
(C22×D7).235C23 = D28⋊9Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).235C2^3 | 448,1183 |
(C22×D7).236C23 = C22×D14⋊C4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).236C2^3 | 448,1240 |
(C22×D7).237C23 = C2×C4×C7⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).237C2^3 | 448,1241 |
(C22×D7).238C23 = C2×C23⋊D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).238C2^3 | 448,1252 |
(C22×D7).239C23 = C2×C28⋊2D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).239C2^3 | 448,1253 |
(C22×D7).240C23 = D4×C7⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).240C2^3 | 448,1254 |
(C22×D7).241C23 = C2×D14⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).241C2^3 | 448,1266 |
(C22×D7).242C23 = Q8×C7⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).242C2^3 | 448,1268 |
(C22×D7).243C23 = (C2×C28)⋊15D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).243C2^3 | 448,1281 |
(C22×D7).244C23 = C14.1072- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).244C2^3 | 448,1284 |
(C22×D7).245C23 = C22×C4○D28 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).245C2^3 | 448,1368 |
(C22×D7).246C23 = C22×D4⋊2D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).246C2^3 | 448,1370 |
(C22×D7).247C23 = C22×Q8⋊2D7 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).247C2^3 | 448,1373 |
(C22×D7).248C23 = C2×Q8.10D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).248C2^3 | 448,1374 |
(C22×D7).249C23 = C2×D7×C4○D4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).249C2^3 | 448,1375 |
(C22×D7).250C23 = C2×D4.10D14 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).250C2^3 | 448,1377 |
(C22×D7).251C23 = D7×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×D7 | 112 | 8- | (C2^2xD7).251C2^3 | 448,1381 |
(C22×D7).252C23 = D7×C2×C42 | φ: trivial image | 224 | | (C2^2xD7).252C2^3 | 448,924 |
(C22×D7).253C23 = C2×D7×C4⋊C4 | φ: trivial image | 224 | | (C2^2xD7).253C2^3 | 448,954 |
(C22×D7).254C23 = C4×D4×D7 | φ: trivial image | 112 | | (C2^2xD7).254C2^3 | 448,997 |
(C22×D7).255C23 = C4×Q8×D7 | φ: trivial image | 224 | | (C2^2xD7).255C2^3 | 448,1024 |
(C22×D7).256C23 = D7×C22.D4 | φ: trivial image | 112 | | (C2^2xD7).256C2^3 | 448,1105 |
(C22×D7).257C23 = D7×C42.C2 | φ: trivial image | 224 | | (C2^2xD7).257C2^3 | 448,1140 |
(C22×D7).258C23 = D7×C42⋊2C2 | φ: trivial image | 112 | | (C2^2xD7).258C2^3 | 448,1156 |
(C22×D7).259C23 = D7×C4⋊1D4 | φ: trivial image | 112 | | (C2^2xD7).259C2^3 | 448,1167 |
(C22×D7).260C23 = D7×C4⋊Q8 | φ: trivial image | 224 | | (C2^2xD7).260C2^3 | 448,1176 |
(C22×D7).261C23 = D7×C23×C4 | φ: trivial image | 224 | | (C2^2xD7).261C2^3 | 448,1366 |
(C22×D7).262C23 = C22×Q8×D7 | φ: trivial image | 224 | | (C2^2xD7).262C2^3 | 448,1372 |